Biconnected Components
 An instructional graph algorithm

Graham Poulter
gpoulter@cs.uct.ac.za

Department of Mathematics and Applied Mathematics
University of Cape Town
4 August 2005

The Problem

Given a connected graph G with n verticies and m edges. We shall find, in $O(n+m)$ time, the

〒 Biconnecied components
© Separation vertices
© Separation edges

Definitions

© A separation vertex or edge is one whose removal disconnects G.
© A biconnected component is a maximal biconnected subgraph of G. Edges and non-separation vertices belong to exactly one component, while separation vertices belong to at least two.
© Biconnected components contain no separation vertices or edges (nothing to break it). Between any two vertices there exists at least two disjoint paths, and G has a simple cycle containina them.

Example Graph

Separation vertex and edge are shown in red.

Equivalence Classes

© Edges e and f of G are said to be linked if either $e=f$ (they're the same edge) or G has a simple cycle containing e and f.
© If e and f are linked, and f and g are linked, then e and g are linked (transitivity), because you can construct a cycle around them. A set of such mutually-linked edges forms an equivalence class (each edge is "equivalent" to the others in the class).
© Each equivalence class corresponds to a biconnected component of G.

Auxiliary Graph

© Vertices in the auxiliary graph F are edges in G. We link vertices in F according to the link relation: e and f are linked if G has a simple cycle containing them.
© Each component of F represents an equivalence class, which tells us the edges in the corresponding biconnected component of G.
© Isolated vertices of F are separation edges in G. A separation vertex in G has adjacent edges whose vertices in F are in different different components.

Algorithm Overview

उ Do a Depth-First Search (DFS) on G, using it to construct a proxy graph, F^{\prime}, that contains just enough links to have the same components as F.
© On the next slide (the DFS tree for G), back-edges are in dashed green, discovery edges in bold red.
© Three slides from now (the proxy graph F^{\prime}), green vertices represent back-edges, and red represents discovery edges.

DFS Representation

Constructing the Proxy Graph

उ Visit vertices v in DFS order. For each back-edge $(u \rightarrow v)$, link $(u \rightarrow v)$ to the (unique) discovery edge $(x \rightarrow u)$. Traverse backwards, linking $(u \rightarrow v)$ to ancestral discovery edges, until encountering the "root" vertex v.
© BUT: also stop after linking to a discovery edge that has already been linked to. There is no need to carry on once you've joined up with the rest of the equivalence class.

Proxy Graph F^{\prime}

Proxy Graph Algorithm

for Vertices v of G in DFS order (start vertex s do for all Back-edges $e \leftarrow(u, v)$ do while $u \neq v$ do
$f \leftarrow$ Discovery edge (x, u)
F^{\prime}.addEdge (e, f)
if f.linked $=$ false then

$$
\text { f.linked } \leftarrow \text { true }
$$

$$
u \leftarrow x
$$

else

$$
u \leftarrow v
$$

end if
end while

References

"Algorithm Design: Foundations, Analysis, and Internet Examples"
Michael T. Goodrich and Roberto Tamassia
John Wiley \& Sons (2002)
http://ww3.algorithmdesign.net/handouts/Biconnectivity.pdf

